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describe here and possibly with the majority of other ' say, zero to three in these quantities. However, for

methods to be found in the literature.

The results are very similar to those for direct
methods (Fan et al., 1984), the P,-function method
(Hao & Woolfson, 1989) and the analytical method
(Fan, Hao & Woolfson, 1990). This really raises the
question whether the errors from the various methods
are highly correlated with respect to individual reflec-
tions. If the correlation was low and the weighting
schemes were sensible then it should be possible to
produce a better answer than that from any single
method by combining the results from all the
methods. Our experiments in this direction show that
it is indeed possible to produce a better resuit from
pairs of methods, or even from triplets, but combining
results from any more than three methods produces
no gain. We suspect that each of the five methods we
have explored in our laboratories in Beijing and York
are exploiting the information from OAS in approxi-
mately equivalent ways and so are giving similar
results. A related conclusion is that it would probably
not be productive to look for even more methods of
similar type for exploiting OAS data, although we do
not discount the possibility that more sophisticated
approaches may be more successful.

Finally, we point out from the results in Table 3
that it may be rather misleading to assess the practical
effectiveness of procedures by using only calculated
data sets - even those with added errors if the error
simulation is not done realistically. The virtue of using
calculated data is that they reveal the intrinsic proper-
ties of the method without the complication of errors
in the data which will vary from one experimenter to
another and with the technique of data collection.
However, error-free data do not exist and errors do
not occur in convenient ways. Methods like the Pi-
function method, which use values of | F(h)| —|F(h)],
can comfortably tolerate random errors of factors of,
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real observed data, the error factors can be much
higher and even the sign will be wrong for some of
the anomalous differences. Whether or not any par-
ticular method will work with real data is not easy
to predict. However, since there are very few
occasions when real observed data cannot be used,
we would advocate their use whenever possible. If
this is not possible then, as can be seen from Table
4, it is possible to simulate errors in a more compli-
cated way that gives data with characteristics compar-
able to those of observed data - including giving
anomalous differences with the wrong sign.

We thank Hao Quan for providing the x(h) Fourier
coefficients from the |P,| map and also Eleanor
Dodson for the FFT routine. Finally we are grateful
to the Science and Engineering Research Council for
its generous support.

References

BLow, D. M. & ROsSMANN, M. G. (1961). Acta Cryst. 14, 1195-
1202.

DopsoN, G. G., SEVCIK, J., DODSON, E. & ZELINKA, J. (1987).
Metabolism of Nucleic Acids Including Gene Manipulation, pp.
33-36. Prague: Slovak Academy of Sciences.

FAN, H., HAN, F., QIAN, J. & YAO, J. (1984). Acta Cryst. A40,
489-495.

FaN, H., Hao, Q. & WOOLFSON, M. M. (1990). Acta Cryst. A46,
656-659.

GLOVER, 1. D., Moss, D. S., TickLE, 1. J,, PiTTs, J. E., HANEEF,
1., Woop, S. P. & BLUNDELL, T. L. (1985). Adv. Biophys. 20,
1-12.

HAo0, Q. & WOOLFSON, M. M. (1989). Acta Cryst. A4S, 794-797.

KARLE, J. (1985). Acta Cryst. Ad1, 387-394.

KARTHA, G. (1961). Acta Cryst. 14, 680-686.

OKAYA, Y., SAITO, Y. & PEPINSKY, R. (1955). Phys. Rev. 98,
1857-1858.

WANG, B. C. (1985). Diffraction Methods in Biological
Macromolecules, edited by H. W. WyckoFfF, C. H. W. HIRrs &
S. N. TIMASHEFF, pp. 90-112. New York: Academic Press.

Some Additional Features of One-Wavelength Anomalous Dispersion

By JEROME KARLE
Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5000, USA

(Received 9 October 1990; accepted 2 April 1991)

Abstract

By use of appropriate algebraic formulas, illustrations
are given of several characteristics of one-wavelength
anomalous-dispersion data, for the case that one
predominant type of anomalous-scattering atom is

0108-7673/91/050537-07803.00

present. It is shown that, when the structure of the
anomalous scatterer is known, some simple algebraic
formulas may be used to generate initial values of
many phases associated with a macromolecular struc-
ture. In some cases, there may be enough phases
determined to permit further refinement and
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extension by use of current techniques for doing so.
Another calculation shows the virtue of including
isomorphous-replacement data and how readily that
is done in an algebraic system. It is also shown that
there is an advantage in accuracy through the use of
a particular statistical calculation of the magnitude
of the structure factors for the anomalous scatterers,
even when the magnitudes are known accurately
because the structure of the anomalous scatterers is
known. This occurs because the statistical values are
scaled to adjust to errors in the data and thus avoids
a disparity in scale that would occur otherwise in the
algebraic system. With highly accurate data, the
advantage would disappear. It is also shown,
however, that, even with accurate one-wavelength
anomalous-dispersion data, the coupling of isomor-
phous-replacement data leads to greater accuracy in
evaluating phase differences than coupling with
known magnitudes for the structure factors associated
with the anomalous scatterers. Finally, there is a
discussion of the use of known and statistically esti-
mated values of the structure-factor magnitudes that
correspond to the total structure in which all atoms
(including the anomalous scatterers) scatter as if they
were all scattering normally.

Introduction

In previous studies (Karle, 1985b, 1989), it has been
shown that there are circumstances in which the usual
ambiguity associated with the calculation of the
values of two-phase invariants can be largely resolved
by making use of statistical information. This was
illustrated for the case of macromolecules in which
most atoms scatter X-rays with negligible anom-
alous dispersion and only one predominant type
of anomalously scattering atoms is present. In
this article, several features of one-wavelength
anomalous-dispersion data, some of which were
alluded to in previous publications, will be discussed
further. They concern such matters as the initial evalu-
ation of phases for the macromolecular structure, the
resolution of the twofold ambiguity and the relative
virtue of using a theoretical calculation of the values
of the intensities for the structure of the anomalously
scattering atoms instead of the values computed from
a known structure.

The subject of this article is mainly one-wavelength
anomalous dispersion. There are, of course, other
sources of data which could be additionally quite
helpful, such as multiple-wavelength anomalous dis-
persion and multiple isomorphous replacement. With
good data, a one-wavelength experiment may prove
to be useful and convenient. In any case, studies of
the latter serve to characterize the anomalous-disper-
sion technique.

For other approaches to resolving the twofold
ambiguity, there are the use of the heavy-atom posi-
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tions as applied, for example, in the investigation of
crambin (Hendrickson & Teeter, 1981), the filtering
method of Wang (1985) and the sine Patterson func-
tion of Okaya, Saito & Pepinsky (1955) discussed
further by Hao & Woolfson (1989).

Description of calculations

Initial phase evaluation when the structure of the
anomalous scatterers is known

It was previously noted (Karle, 1986) that the fol-
lowing exact equations obtain for the case that one
type of anomalous scatterer is present:

sin (—@af— 4’;..-) = [‘FA,,IZ—IFA,-,|2-—4(]7,(2/)"2',,,)2|F;,,,|2]

><[4(fKz/fé"..)lFAr.llFE‘,hI]" (1
sin (@an— (0;,h) = ['F/\h|2 - ‘Fu‘-|2 +4(f1’\2/f’2,.h)2|F’2|,hl2]
x[4(f 32/ fow) | Fanll Foal] 7! (2)

where F,, is the structure factor for a macromolecule
containing one type of anomalous scatterer at some
incident wavelength, A, ¢,, is the corresponding
phase, f7, is the imaginary correction to the normal
atomic scattering factor, f3,, of the anomalously scat-
tering atoms, Fj, is the structure factor for the
anomalously scattering atoms, scattering as if there
were no anomalous corrections, and ¢3, is the corre-
sponding phase. If the structure of the anomalous
scatterers is known, it is possible to compute the
values of the F3, and therefore the values of the
|F5.* and ¢3,. Equations (1) and (2) can then be
used to obtain initial values of ¢,, by specifying a
magnitude somewhat less than unity that the right
sides of (1) and (2) must attain. When this value or
greater is attained, the sine functions may be set
approximately equal to +1 or —1, as appropriate, and
then the —¢,; or ¢,, may be set approximately equal
to @3nt@/2 or @;,—m/2, corresponding to the
values of +1 and —1, respectively. This could give an
initial set of values for a number of phases. It appears
to be a convenient way to obtain an initial set of
phase values having an acceptable error. Evidently,
in this calculation, we are dealing with the class-
ical single-wavelength anomalous-scattering phase
ambiguity. An average value between two indistin-
guishable ambiguous alternatives is assigned when
the alternatives differ by a tolerable amount from
their average value. With errorless data, only when
the magnitude of the right sides of (1) and (2) is equal
to unity can these equations give a unique exact
evaluation.

Calculations based on (1) and (2) are shown in
Table 1. They were performed with data for cyto-
chrome ¢550.PtCl3~ (Timkovitch & Dickerson, 1976)
at 2-5 A resolution. The calculations were made at
three different limiting magnitudes for the right sides
of (1) and (2), 0-938, 0-766 and 0-000. The error
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Table 1. The evaluation of individual phases, ¢,, and ¢,, with anomalous-dispersion data by use of (1), (2)
and 2-5 A data for cytochrome ¢550.PtC13~ (Cu Ka radiation)

Those values of the phases ¢,;, and ¢,; that were determined to be sufficiently close to ¢3,+ 7/2 or ¢;,— 7/2 by use of (1) and (2)
were set equal to those values. This was done when the magnitudes of the right sides of (1) and (2) were equal to or larger than the
magnitudes in column 2, otherwise the phases were not evaluated. The total number of independent noncentric data for cytochrome
is 3252 at 2-5 A resolution. The factor 1-5 means that an error was introduced into the correct difference | Fanl — | Foil by making it 1-5
times larger. The factor 1-0 signifies that no error was introduced into the difference and 0-5 that the correct difference was reduced
by a factor of 2. The average magnitudes of the errors for ¢,, and ¢,; at the various acceptance levels are shown in columns § and 7,
respectively.

Limit for
Number of |right sides| Error factor for Number of {|Error|) for Number of {|Error]) for
reflections of (1), (2) 1 Fanl = | Fagll @an accepted @xn (rad) @ accepted @xi (rad)
3252 0-938 15 46 0-313 45 0-457
3252 0-766 15 715 0-444 699 0-443
3252 0-000 15 3252 0-849 3252 0-848
3252 0-938 1:0 645 0-183 618 0-177
3252 0766 1-0 1266 0-353 1267 0-352
3252 0-000 1-0 3252 0835 3251 0-836
3252 0-938 05 s 0-244 4 0169
3252 0-766 05 629 0-423 622 0-427
3252 0-000 05 3252 0-840 3252 0-841
factors are factors that multiplied the correct differen- an=142f 0/ fon+ (23 (fon)} (10)
ces | Fyu| —| Fagl- These errors were distributed equally Bu=2(14f1a/ f74) (a1
among the |F,,| and |F,;|. The factor 1-0 implies that h A2/J2h
no error was introduced into the data. The results of Yo=2f%2/f2n- (12)

the calculations are shown in the last four columns.
It is seen that numerous phases can be evaluated in
this way with sufficient accuracy to be potentially
useful, even for relatively large errors in ||F, | - | Fal|.
Phases obtained by this calculation are identical to
those that would be obtained by classical single-
anomalous-scattering methods, i.e. the centroid of the
bimodal probability distribution. The use of a par-
ticular lower limit for the right sides of (1) and (2)
is identical to selecting the subset of reflections having
the highest conventional single-anomalous-scattering
figures of merit. The phase values would be suitable
for further refinement and extension techniques, for
example, with use of triplet phase invariants or as
starting values in the least-squares analysis of two-
phase invariants (Karle, 1989).

The quantity f, is the real part of the correction to
the normal atomic scattering factor, f3,, of the
anomalously scattering atoms (labeled by the sub-
script 2), F7, is the structure factor for the non-
anomalously scattering atoms and ¢y, is the corre-
sponding phase. F,, and F73, are structure factors as
defined for (1) and (2).
The system of equations (3)-(5) has been used in
a one-wavelength context to evaluate ¢7,— @37, by
making use of a statistical estimate of [F5|*, thus
reducing the number of unknown quantities from
four to three (Karle, 1985b). A least-squares tech-
nique was used to evaluate the unknown quantities
from the equations which contain a twofold
ambiguity. The calculation of initial values of the
unknown quantities for use in the least-squares pro-
cedure with (3)-(5) has been described (Karle, 1985a,
Use of isomorphous-replacement data 1989). It was apparent from the results of the calcula-
tion that the method usually selected the ambiguous
alternative that was closer to the correct value. A
geometric analysis (Karle, 1985a) suggested that the
reason for this was the degree of accuracy obtained
from the statistical method used to obtain starting
values of the |F7,|* for the least-squares calculation.
|Fanl> = x1+ anxz+ Buxs+ YnXa (3) The calculation presented here is related to the
|Fail> = 3+ ctnxa + Buxs — (4) latter conclusion. Here, instead of estimating the
ARl T X0 T GeX2T PrX3 T YaXa values of the | F5 ] and holding them fixed, the values
Xt xi=xuxe (5) of the |F7,|* are considered known and introduced
= ]F" |2 (6) into the system (3)-(5). These values would be avail-
! Lh able from an isomorphous-replacement experiment
x2=|Fiul’ (7) in which the anomalous scatterers were introduced
(8) by isomorphous substitution. The values of the |F7,|°
would correspond to the data obtained from the
Xa=|FiallF5ulsin (@7 n—@5n) (9) native protein.

In this section, a system of equations is considered
for a structure in which there are atoms having negli-
gible anomalous scattering and, in addition, only one
type of anomalously scattering atom. The appropriate
equations are (Karle, 1980, 1985b, 1989)

X3= IF;"h”F;.hl Cos (‘p’ll.h_ ‘P;,h)
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Table 2. Averages of the magnitudes of error for data

from cytochrome c¢550.PtCl3~ for the phase differences,

@Th—®3n, as a function of the type of sample and
errors in known values of |F},|*

The data were treated as exact and calculated as if only the Pt
atoms scattered anomalously. The samples are based on h associ-
ated with an ordered sequence of || F, | — | F,&l| in which the largest
one is first. Initial values of |Fj,|? were obtained from (13) for
application of system (3)-(5) in a least-squares fashion. The total
number of independent noncentric data is 3252 at 2-5 A resolution
and the radiation is Cu Ka.
(|Error) (rad) for ¢7,~ o2,
given ({|Error|) for [F] I

Sample 0% 5% 10%
1-100 0-001 0-061 0-135
901-1000 0-007 0-113 0-230
1601-1700 0-000 0-111 0-212
1-1700 0-003 0-098 0-190

Table 2 shows the average magnitude of error for
the values of (¢7,— ¢35 ,) obtained from (3)-(5) when
the values of the | F7,|* are introduced into the system
with a variety of average errors. The calculations were
made for 3252 exact independent noncentric data
at 2:5A resolution from cytochrome ¢550.PtCl;~
(Cu Ka radiation). The data were calculated as if
only the Pt atoms scattered anomalously. Samples
were composed from the h associated with an ordered
sequence of ||F,,| —|F,&ll in which the largest one is
first.

It is seen from the second column of Table 2 that,
when exact values of the |F,,| and |F},| are used,
essentially exact values of the ¢7,— ¢3, are obtained
from (3)-(5). Evidently the correct ambiguous
alternative is generally obtained. This is consistent
with the earlier geometric interpretation of ambiguity
resolution, mentioned above, when statistically esti-
mated values for the |F5,]> were used in a least-
squares calculation of (3)-(5) (Karle, 1985b). It is
also seen that 5 and 10% random errors in |F},|* lead
to small average errors in the ¢ ,— ¢7,.

Use of the known structure of the anomalous scatterers

If the structure of the anomalous scatterers is
known, it is possible to calculate readily the values
of |F5,)* and ¢3,. In the previous section, it was seen
that knowledge of the exact values of the | F} |’ leads
to high accuracy in the application of (3)-(5). The
question arises concerning what the comparable
accuracy would be if exact values of | F3,|* were used
in (3)-(5) with exact values of the |F,,|° and |F,*.
Such a calculation is shown in Table 3 for cytochrome
¢550.PtCl;~ and Hg elastase (Shotton & Watson,
1970; Watson, Shotton, Cox & Muirhead, 1970).

The sampling level is a point at some fraction of
the total data set, listed in decreasing values of || F, | —
| Foill- The average magnitudes of error in the phase
differences, ¢7,— ¢34, are averages of several hun-
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Table 3. Averages of the magnitudes of error for data

from cytochrome ¢550.PtCl;~ and Hg elastase for the

phase differences ¢1,— @3, as a function of sample
level for exact values of |F3,|’

Sampling level is a point at some fraction of the total data set,
listed in order of decreasing values of || F,,,| - | F,5|| and the average
magnitude of error in the phase differences, ¢ ,—¢7,, is the
average of several hundred determinations taken in the vicinity of
the sampling level. The total number of independent noncentric
data for cytochrome was 3252 and for elastase 6864, both at 2-5 A
resolution. At 2-0 A resolution for elastase, there were 13 672 data.
The results were obtained from the application of system (3)-(5)
in a least-squares fashion. Exact data for Cu Ke radiation were
used.

(|Error|) (rad) for ¢, — @5,

Cytochrome
€550.PtCI13~ Hg elastase
Sampling 2:5A 2:5A 2:0A

level resolution resolution resolution
0-10 0-119 0-177 0-159
0-25 0-206 0-290 0-272
0-50 0-319 0-440 0-443
0-75 0-560 0-623 0-593

dred determinations taken in the vicinity of the sam-
pling level. At 2-5 A resolution the total number of
independent noncentric data for cytochrome is 3252
and for Hg elastase 6864. At 2-0 A resolution for
elastase there are 13 672 data. In all cases, Cu Ka
radiation was used.

It is seen from Table 3 that although the average
magnitude of errors of the phase differences, o7}, —
©3n, are within what would be considered acceptable
bounds, they do not compare with the almost perfect
results shown in column 2 of Table 2 from use of
exact values for the |F7,|°.

Use of theoretical and known values of |F5,|* in system
(3)-(5) when there are errors in the data

As has been discussed previously, one way to use
(3)-(5) in a single-wavelength experiment is to make
a theoretical estimate of |F5,|* and hold its value
while a least-squares solution to (3)-(5) is found.
Alternatively, if the structure of the anomalous scat-
terers is known, |F5,|> can be calculated. Since the
theoretical estimate of |F5,|* is defined, in part, by
|| Fanl = | Faill (13) and, in a sense, scaled to the error
in the difference of magnitudes, it is not obvious that
it is better to use the known values of |F3,|* rather
than the theoretical estimate in the evaluation of
@1 n—@sn from (3)-(5). In this section, calculations
are discussed which afford some insight into this
matter.

Estimated values for |F3,* can be obtained from

|F3al> = S{|Fanl — | Fall/ 207/ /301F,  (13)

where S is the scale factor that is equal to 1 when
the angles ¢,, and —¢,; are equal. An estimate of
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Table 4. Averages of the magnitudes of error for data from Hg elastase for the phase differences ¢\, — @3y,
determined from system (3)-(5) as a function of the type of sample, error factor and source of fixed value for lF;,,IZ

The samples were selected in the same fashion as described in Table 2 and the error factor has the same meaning as in Table 1. The
theoretical values for |F;‘v,,|2 were obtained from (13). A convergence technique, in which convergence of the least-squares calculation
based on (3)-(5) is facilitated by a systematic narrowing of the gap || F.y| — | F.ill, was applied in column 4 to those calculations that
did not otherwise converge. There was no convergence problem for exact values of |F;",,|2 and 0-5 error factor. There were therefore
no calculations to report in the lower half of column 4. The calculations were made with data for Hg elastase at 2-0 A resolution for
which the total number of independent noncentric data is 13 672. The data were calculated for Cu Ka radiation.

(|[Error|) (rad) for ¢}, — @5, given values for [F} |’

Exact value Theoretical

Sample Error factor Exact value + convergence value
1-600 Nonconvergence 0-697 0-210
4701-5300 1-5 0-537 0-784 0-464
9401-10 000 15 0-701 0-763 0-762
1-10 000 1-5 0-570* 0-756 0-511
1-600 0-5 0-824 0-481
4701-5300 0- 0-946 0:-716
9401-10 000 0-5 0-918 0-946
1-10 000 0-5 0-930 0-741

* For all that converge and pass acceptance criteria, i.e. a calculation is rejected if the calculated value of |Fy | is less than 0-33 (|F,|+|F,3]) or less

than a preassigned value which, in this case, was set at 100, or both.

the values for S can be based on test examples having
the same atomic composition as the substance of
interest. For the test examples a list is made of the
differences || F,| — | Fyil| in order of decreasing magni-
tude. For successive subsets of these differences,
average values of the known functions on both sides
of (13) are evaluated, giving an average value of S
for each of the subsets. If the number of differences
in each of the subsets is sufficiently large to give
average values of S for the test examples with small
statistical variance, these values can be used for the
unknown structure.

Averages of the magnitudes of error for the phase
differences, ¢ ,— @14, determined from (3)-(5), are
illustrated in Table 4 as a function of sample type,
error factor and the source of fixed values for |F3,[°.
The samples have been selected in the same way as
in Table 2 and the error factor has the same meaning
as in Table 1. Theoretical values for |F3,|° were
obtained from (13) and exact values were obtained
from the known structure. A convergence technique,
in which convergence was not initially obtained in
the least-squares calculation based on (3)-(5), was
facilitated by a systematic narrowing of the gap,
|| Faul = | Fiill. The results are seen in column 4. There
were no convergence problems for exact values of
|F3,* and an error factor of 0-5, and therefore there
were no calculations to report in the lower half of
column 4. The calculations were made for Cu Ko
radiation on data for Hg elastase at 2-0 A resolution
for which the total number of independent noncentric
data is 13 672.

It is seen from Table 4 that, for this calculation,
there is an advantage in proceeding with the use of
the theoretical value for |F3,|° obtained from (13)
rather than the exact value. This advantage is likely
to decrease as the errors in || Fy,| —|Fyg|| decrease.

Unique values for y,,— @5, and |F3,° from a one-
wavelength experiment

The mathematical analysis that forms the basis for
this section can be found in an earlier publication
(Karle, 1985a). Specifically, with the use of (24) and
(25), Tables 1 and 2 (with corrections for cases m =1
and 2 by the insertion of omitted magnitude signs in
the third column) from the latter reference, we obtain
for m=1

| Fanl = [ Fual
2052/ f3m)| Fon

n

sin (11/72‘h"<Pz‘h)'—“ (14)

since f, is nonnegative and for m =2

|Fan+ Fal+|Fant+ Fhal = 2| Fil
4(V;2|/fg‘h)|Fg,h| €OS 872
(15)

Cos (2*/;2). - ‘P;,h) =

where F7 is the structure factor for the entire structure
in the absence of anomalous scattering, cos 8,,, is
equal to +1 if f}, is positive and equal to —1 if f},
is negative and
md’2,h=0'5(m¢2‘h_md‘2.ﬁ)' (16)
The phase |, is the phase associated with F¥j, as
indicated by the subscript 2 (Karle, 19854, Table 1).
It should be noted that it was shown in this reference
that, to the approximation represented in (14) and
(15), 2y and 4,y are interchangeable. The phase
W, is the phase associated with F,y, 24,4 is the
phase associated with F,,+ F}; and ,4,, is the phase
associated with Fp. Calculations have indicated
(Karle, 1985a, Table 3) that these angles differ from
one another on the average by only a few degrees.
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Table 5. Average magnitude of error for {,,— @5, and |F3,[> when quantities are calculated from (22) and
(23) for exact and statistical values of |F|

Statistical values for |Fy| are obtained from (23). The calculations are based on data calculated from the structure of cytochrome
¢550.PtCI2~ for Cu Ka radiation in which it is assumed that Pt is the only anomalous scatterer. The data were calculated to 2:5 A
resolution corresponding to 3252 independent acentric data. In formulating the samples, the data were ordered on || F,,|—|F,l| with
the first |F,,|? corresponding to the largest difference. Results based on exact values of |Fy|* are given in columns 2 and 4 and those

based on statistical values are given in columns 3 and 5.

{|Error|)(rad)

({Error|)(rad)

Sample for Y, ,— @7n for ¢, —
1-500 0-056 0-397
501-1000 0-036 0-481
1001-1500 0-036 0-605
1501-2000 0-022 0-684
1-2000 0-038 0-542

With the use of
|Fant Ffil+ |Faa+ Fhl
= 2[|FAh|2+ ’FAE|2+2|FAh”FAEI cos (gant ‘PM‘.)]U2

=2(|Ful* +| Fail + | Fanll Fal)2 (17)
and
In=025(dnt dontobintoban)  (18)
where
min=0-5(mthin— mi ), (19)
we may write (16) and (17) as
. = n Fynl —1Fan
sin “”“’¢2'“)=2(|fxz/lfs.l)\F|;_hl 20
and
cos (Yn—@3n)
2[lFAhlz+IFAE|2+21FAI|”FAE|]1/2_lF:I (21)

2(V22|/f;,n)1F;,n| oS 8,

The average angle ¢, may be written with (18) and
appropriate definitions (Karle, 1985a, Table 1)

Jh=0'25 [‘Pan—‘Paﬁ*“P:

1 |FAh| Sin @, n— IFAEI sin @,x
IFAIII cos ‘PAh+|FAﬁ| COS @ah

+tan ] (22)
A statistical formula for the evaluation of | F}| for use
in the application of (20) and (21) in a one-
wavelength context is (Karle, 1984)

| Fal=0-5Wyn(|Fonl + | Fip), (23)
where
nun 1/2
): fint Z (fiw)?
WAh= N (24)

non

Z fint Z (W41

Test calculauons were made with (20) and (21) in
which the unknown quantities were ¢, — 3, and | F3 |

(lError|)(% (|Error|)(%)

®n for |F5, for |F3 )
1-4 21
32 39
42 52
5-4 67
3-6 45

(Table 5). Two types of calculations were made, one
with exact values for | Fj| and a second with statlstlcal
values for | Fj| computed from (23). The test molecule
was cytochrome c550.PtC13” in which Pt was regarded
as the sole type of anomalous-scattering atom. Exact
data were used. Errors were calculated from knowl-
edge of the structure and use of (22) to give optimal
values for ¢,.

Examination of the results of Table 5, particularly
column 3, and comparing them with the results for
exact data in Table 1 of an earlier study based on
statistical estimates of |F3,|* (Karle, 1985b) shows
that no advantage accrues from evaluating phase
differences on the basis of statistical estimates of | Fy|
rather than on statistical estimates of |[F3,|*. This was
also observed in a previous study involving an alterna-
tive algebraic analysis (Karle, 1989). In this case as
well as the earlier study made with statistical estimates
of |F3,|, the errors in phase differences with the use
of actual rather than exact data may be small enough
in some experiments to permit the use of one-
wavelength data, if it were considered expedient to
do so.

Concluding remarks

It has been shown in Table 1 that it may be possible
to obtain, from a simple calculation, a large number
of initial values for the phases of structure factors
relating to a macromolecular structure, simply from
knowing the structure of the anomalous scatterers.
Various procedures for phase extension and
refinement, including the possibility of using triplet
phase invariants, may then be applied with use of the
initial values.

The value of combining isomorphous-replacement
data with one-wavelength anomalous-dispersion data
has long been known. The results shown in Table 2
illustrate that the virtue of this combination may be
readily achieved by calculations that use the simple
system of equations (3)-(5). As Table 3 shows,
however, if instead of having isomorphous replace-
ment data it is assumed that the structure of the
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anomalous scatterers is known, a somewhat less-
accurate result is obtained from use of the simple
system of equations despite the fact that the number
of unknown quantities remains the same. The reason
for this is the need to use a quadratic equation in
addition to the linear ones, giving a twofold ambiguity
which is accurately resolved by isomorphous-replace-
ment data, but somewhat less accurately so with use
of the known structure of the anomalous scatterers.

Another question concerning the system of alge-
braic equations concerns whether greater accuracy is
obtained in the calculation of the phase differences
when exact values of the structure factors for the
anomalous scatterers are used, as obtained from their
known structure, rather than the statistical values
defined in (13). As seen in Table 4, it is better to use
the statistical values of the structure-factor magni-
tudes when significant errors are present in the data.

Finally, the question concerning whether (20) and
(21) could be used with rather accurate statistical
estimates of |Fy| from (23) to give more accurate
values for phase differences than alternative algebraic
calculations is answered in Table'S. The accuracy of
the values is about the same as that obtained in
alternative systems of equations. It is also obvious
from Table 5 that more-accurate values of |Fj| would
lead to potentially accurate values for phase differen-
ces. More-accurate values for | F;| would come from
experiments that included shorter wavelengths.

This article has been devoted, for the most part, to
one-wavelength anomalous-dispersion data. It has
revealed some further characteristics of the informa-
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tion available which imply that, for some systems, a
one-wavelength experiment may suffice to yield a
solution. This is already known to be true from
experience. It would seem, however, that unless it is
quite expedient to work with one-wavelength data,
the addition of isomorphous-replacement and
multiple-wavelength information would be quite
beneficial.

I thank Mr Stephen Brenner for writing the pro-
grams and making the computations reported here.
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Naval Research and by USPHS grant GM 30902.
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Abstract

Continuous diffuse scattering is noted in electron
diffraction patterns from polymethylene compounds
such as n-paraffins and polyethylene. In a projection
down the chain axes, experimentaily produced by

0108-7673/91/050543-07$03.00

solution crystallization, the diffuse scatter in hk0 pat-
terns disappears at low temperature, in accord with
a thermal-diffuse-scattering model, which explains
the intensity distribution and its temperature depen-
dence. For a projection onto the chain axes, experi-
mentally achieved by epitaxic orientation on benzoic
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